ISTITUTO TECNICO STATALE PER GEOMETRI "A. VOLTA"

Località Cravino - 27100 PAVIA - tel 0382 526353 - fax 0382 526596

Università degli Studi di Pavia

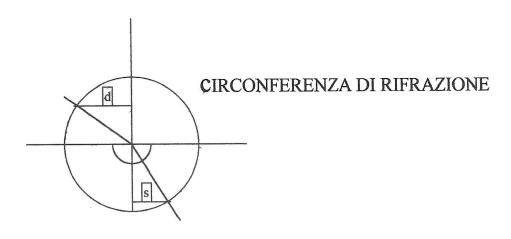
CENTRO DI STUDI PER LA DIDATTICA DELLA FACOLTA' DI SCIENZE

via Bassi, 6 27100 PAVIA tel 0382 507471

A.I.F.
SEZIONE DI PAVIA
via Bassi, 6 tel 507471

XXI CORSO DI AGGIORNAMENTO IN FISICA ANNO 1997 "OTTICA"

Laboratorio: Banco ottico, riflessione, rifrazione


Pavia - Autunno 1997

Rifrazione 1 Legge di Snellius

a) Analisi dell' esperimento

1) Inizialmente si esamina la funzione $\hat{i} = f(\hat{r})$; \hat{i} è l'angolo di incidenza ed \hat{r} il corrispondente angolo di rifrazione .

Successivamente si studia la funzione d = f(s); d ed s sono le distanze dalla normale ai punti ove rispettivamente il raggio incidente ed il raggio rifratto incontrano la circonferenza di rifrazione.

Def . della circonferenza di rifrazione .

E' una circonferenza di raggio arbitrario, giacente nel piano di incidenza e con centro nel punto di incidenza .

2) L'elaborazione dei dati sperimentali.

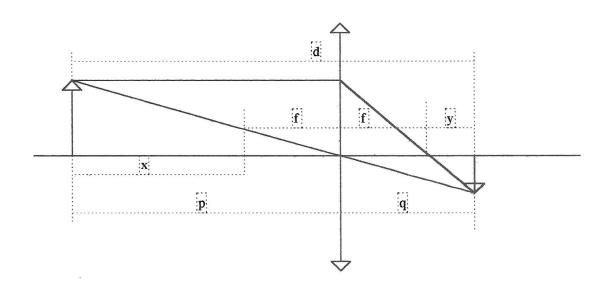
Con i dati della prima tabella si ottiene un grafico rettilineo solo nella prima parte (circa 30°). Non sono gli errori accidentali i responsabili dello spostamento dalla linea retta; per loro natura essi dovrebbero dar luogo a punti sia sopra che sotto la retta del grafico; c'è un "qualcosa di sistematico".

Nella seconda rappresentazione grafica si ottiene una retta passante per l'origine ; si può quindi affermare che d ed s sono direttamente proporzionali

d/s = costante = n

3) Se gli studenti conoscono la trigonometria si può loro suggerire di dividere numeratore e denominatore della relazione trovata per R raggio della circonferenza di rifrazione.

Si ottiene d/R/s/R = n $sen \hat{\imath} / sen \hat{r} = n$


b) Disposizione sperimentale ed analisi dell' esperimento

- 1) Si fissa sul tavolino girevole il foglio di carta millimetrata e si pone su di esso il semicilindro trasparente in modo che il suo centro e quello della circonferenza di rifrazione coincidano e che uno dei due diametri disegnati sia perpendicolare alla superficie di rifrazione.
- 2) Si dispone il proiettore in luce parallela con il filamento della lampada e la fenditura verticali , in modo che nel piano si disegni un sottile fascetto luminoso .
- 3) In ogni fase dell' esperimento ci si deve sempre accertare della centratura (il raggio incidente passante per il centro della circonferenza di rifrazione).
- 4) La sensibilità del foglio millimetrato è 1 div/mm; massima cura va posta nell' individuare l' intersezione del bordo del fascio (considerando sempre lo stesso bordo) con la circonferenza di rifrazione.

 Per piccole distanze l' errore può superare il 10%.
- 5) Si varia a piacere d e si misurano i corrispondenti valori di s (segnando magari inizialmente con una matita le intersezioni ed effettuando successivamente le letture).
- 6) Il semicilindro di plexiglas può essere sostituito da un semicilindro cavo di plastica trasparente pieno d'acqua per lo studio della rifrazione aria acqua.

Rifrazione 2 Studio di una lente sottile

a) Analisi dell' esperimento

- 1) Si vuole studiare la funzione y = f(x) in cui x é la distanza oggetto fuoco ed y é quella fuoco immagine di una lente convergente di data distanza focale, per arrivare alla nota relazione dei punti coniugati.
- 2) E' possibile ritrovare il risultato per altra via , con una rielaborazione grafica dei risultati sperimentali , se gli studenti conoscono gli elementi fondamentali delle similitudini .
- 3) Lo studio della funzione d = f (p) ci permetterà di interpretare teoricamente una osservazione sperimentale : non sempre é possibile mettere a fuoco l' oggetto sullo schermo !
- d é la distanza oggetto schermo
- p é quella oggetto lente.

b) Avvertenze sperimentali ed esecuzione dell'esperimento

- 1) Si dispone il proiettore all'estremità del banco ottico . Nel portadiaframmi si inserisce la freccia .
- 2) Posta la lente ad una prefissata distanza , per diversi valori di p si misurano i corrispondenti valori di d .

 Spostando lo schermo l'immagine della freccia é a fuoco quando é illuminata al massimo e di minima larghezza (indipendentemente dall'alone azzurrino che compare
- 3) Possiamo ritenere che la misura di d abbia un'incertezza di 0.5 cm per la difficoltà di determinare l'esatta posizione dello schermo.
- 4) Ecco la tabella sperimentale suggerita.

p(cm)	d(cm)	x = p - f(cm)	1/ x (1/cm)	y=d - p - f (cm)	k (cm ²)	kmedio (cm²)
40						
50				Market and the second s		
120						
120						

5) Costruiti i grafici y = f(x) e y = f(1/x) si arriva alla conclusione x y = k Osservando il kmedio e confrontandolo con quello delle altre lenti é possibile pensare che esso sia il quadrato della distanza focale . I valori coincidono nell'ambito degli inevitabili errori .

$$xy = f^2$$

all' intorno).

Esprimendo x e y in funzione di p, q ed f x = p-f y = q-f

$$(p-f)(q-f)=f^2$$

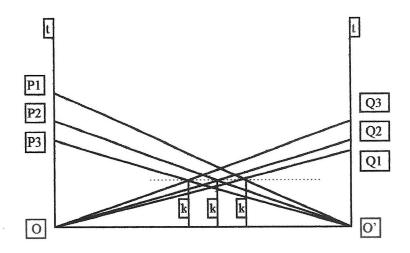
$$pq - pf - fq + f^2 = f^2$$

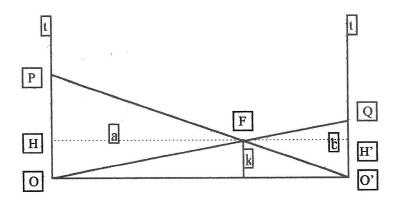
Dividendo ambo i membri per p q f

$$1/f - 1/p - 1/q = 0$$

$$1/p + 1/q = 1/f$$

6) Altra rielaborazione grafica dei risultati sperimentali : q = f (p)


Si assume una retta r (base) e due assi t e t' perpendicolari alla retta r nei punti O ed O' ed a distanza arbitraria.


Riportiamo su t i valori di p e su t' i valori di q.

Uniamo i punti ottenuti con O' ed O (P1, P2,P3.... con O'; Q1,Q2,Q3..... con O).

Le intersezioni delle coppie di rette corrispondenti appartengono ad una retta (entro i limiti degli errori) a distanza k dalla base .

Al variare di p e q, k rimane costante.

Dai triangoli simili POF e FO'Q e PHF e FH'O' si ha :

$$p \mathbin{/} q = a \mathbin{/} b = a \mathbin{/} b = (p - k) \mathbin{/} k$$

$$p k = q p - k q$$

$$1/q = 1/k - 1/p$$

$$1/p + 1/q = 1/k$$

Ora se p diventa sempre più grande , 1 / p diventa sempre più piccolo fino ad essere trascurabile \Rightarrow 1 / q = 1 / k

Se l'oggetto è a distanza infinita, l'immagine si forma a distanza k dalla lente, per cui

$$f = k$$
.

$$1/p + 1/q = 1/f$$

N. B. Questo è un ottimo metodo per ricercare la distanza focale di una lente .

7) Un'interessante approfondimento teorico una volta trovata l'equazione dei punti coniugati è lo studio della funzione d = f(p).

Si può calcolare e determinare graficamente il minimo valore di d per cui può essere messo a fuoco l'oggetto sullo schermo per una determinata lente, interpretando cosi' il risultato sperimentale osservato.